Emergency Services and the Remote Worker

Employee safety is the primary goal of every employer. To accomplish that goal, as well as be compliant with new Federal legislation that recently went into effect (i.e. Kari’s Law and the pending RAY BAUM’S Act §506), commercial enterprises have been scrambling to implement and deliver compliant services to their workforce. With the COVID-19 pandemic, millions of workers have been forced to suddenly shelter in place, or self-quarantine, and have found themselves operating in a remote environment, with little forethought or planning, especially for 911 calling from those devices.

IT administrators have had to scramble just to establish to set up basic connectivity, let alone advanced functionality as the pandemic has flushed many employees from their high-rise offices to their residences. This creates the dilemma of trying to maintain some sense of business flow while at the same time practicing the ever-important social distancing required to combat the spread of this virus.

While most businesses have had some form of remote working capability for workers for some time, often the solution may not have included actual telephony. Additionally, the bandwidth engineering estimates never considered voice and the mass amounts of simultaneous workers. Another issue is the system has never been really been put under a load test of this magnitude and demand as it has now.

For some employees, telephony is secondary. Their need is to just collaborate with each other. For this group, they can utilize teleconferencing  applications such as Zoom, Teams, WebEx, the Avaya Spaces solution (available free for 90 days), along with scores of others providing a virtual team or online meeting room. Most of these are fine internally, but fall short with basic telephony and calls to and from customers in the outside world.

Even while the push has clearly been to move to multimedia sessions, the phone is still an important part for some environments and verticals. For those, employees continue to require some form of remote solution from their PBX telephone system, and often a Contact Center. Many customers deliver this through an IP softphone or integration into the desktop such as the Avaya IX Workplace for Ocrana®, or in some cases, a physical IP telephone device, like the Avaya J179 SIP Phone connected back into the corporate environment though a Session Border Controller.

And this is where the problem begins. A Recipe for Disaster.

To a child or family member 911 is 911 on any phone.

Remember, even though it is at your home, your phone is connected to your corporate PBX telephone system on a virtual ‘extension cord’ that is miles long. The actual PSTN telephone lines are in the PBX at the address of where work is located, or worse, someplace in the cloud. But the number on your telephone is associated with the address of your office at work. These three ingredients can easily lead to disaster if you dial 911 from the work provided IP telephone in your home office, and the proper accommodations have not been put in place to deliver the proper address.

One of the great misnomers that exist out there, is that your telephone system can actually transmit the location of the person making a phone call to 911. Sorry – FALSE – IT CAN’T.

How does that work then? The current 911 network is fairly simplistic in how it works. Calls get routed to the local 911 center based on Caller ID (called Automatic Number Identification) and the install or billing address. See the problem?

What about answering your 911 calls yourself? Many THINK this is a good idea, but it’s actually NOT PERMITTED unless you are a Public Safety Answer Point. Are you? Find out for your self:

Through the magic of the Internet, we’re able remotely place a physical telephone miles or even states away from where the telephone company (and the 911 center for that matter) believes it’s located. This is where most people will just say, “I’ll just not use that phone for 911. I know better.”

While there may be a thread of truth in that, what about your family members? What about your mother or father that don’t really understand technology? What about your child, or the babysitter? Or what about anyone else who happens to be in your home where your ‘special phone’ is the closest phone when they need 911?

Don’t worry, all is not lost. As quickly as technology can break something as simple as dialing 911, there’s more technology that we can layer on top to correct the situation we’ve created. Today brand new NG911 technology exists in the network that will allow you to, provide the location of your device, let an administrator provision the location, or even have the device discover where you are using common forensic discovery tools. In any case, where you are can likely be determined in some form or another. This Youtube Video highlights the Location Discovery issue.

But, that is only half the problem.

Once the location is known, the call routing issue can be solved using a carrier based 911 solution known as a VoIP Positioning Center or VPC. The job of the VPC is similar to that of a long distance telephone company. Just like AT&T, Sprint, and MCI can route to your calls anywhere in the country, the 911 VPC has the same ability on a specialized 911 network.

The PBX simply routes all remote user calls to the VPC, with the location information, and the VPC takes care of getting the call to the right PSAP, and delivering location information. When a device registers as a phone, the location was discovered, and the routing entry is created for the VPC database.

In order to deal with the immediacy of the Coronavirus Pandemic, and the masses amounts of people headed home to work, Avaya has worked with our Select Partner, 911 Secure, LLC to provide a basic level of 911 service that can be deployed immediately with minimal expense. The service is called SecureNOW™ and until May 26th, they are offering this temporary static VPC routing service for remote users for only $0.25 per user per month. Location changes can be made, but are updated manually.

This is a scaled down solution of the Frost & Sullivan 2019 Best Practice Leadership Award winning SENTRY™ solution.

NO HARDWARE OR SOFTWARE IS REQUIRED ON PREM.

The SecureNOW™ Temporary Remote User 911 Service By: 911 Secure, LLC

A simple 911 call routing change is made in the PBX for Remote Users, redirecting them to a special 10-digit PSTN access number of the VPC service, and the routing database will terminate the call at any one of the ~6500 911 PSAPs in the US that corresponds to the home address of the user.

In the following video, I along with Brian Anderson, Director of Avaya Public Safety Solutions review the entire landscape and technology.

Follow me on Twitter @Fletch911
Want a solution and not just Hype?
Don’t just fill in a web form that puts you on a SPAM email list, for a FREE, NO OBLIGATION 911 Compliance Live interview Audit with a NG911 Subject Matter Expert CLICK HERE

Fixing 911 Overload

Every year, NENA – The National Emergency Number Association – estimates that there are over 240 million calls into 911 call centers (known as Public Safety Answer Points or PSAPs). A common problem among all PSAPs continues to be non-emergency calls arriving into the center on Their specialized 911 trunks that exist specifically for emergency calls. The quantity of these trunks is typically limited in each center and and the amount has been carefully engineered to handle the normal volume of 911 calls from the community served by that agency along with a few spares and diverse CO routing where available. The problem is that when they become flooded with non-emergency traffic, legitimate emergency calls could be blocked.

This design also makes the PSAP more susceptible to SWATTING and DDoS attacks by practically anyone and from anywhere. In some areas, emergency calls into a center that is busy may overflow to an adjacent PSAP. While this seems like a logical idea from a backup perspective, let’s examine the bigger picture here.

Not only does this expand the attack face from a SWATTING and DDoS perspective, it is actually quite useless unless there is a Mutual Aid and MOU agreement in place with the other agency. Without the proper authority and the radio comms infrastructure, as well as access to the CAD, there really isn’t much that those agencies can do other than answer the call and write down the information. They then need to figure out a way to get that incident to the agency that can provide service. Typically, if there is no access to the radio network of the adjacent community, or no visibility to the computer-aided dispatch or CAD system, there is little they can actually do with the information they have. Also, remember that if the call has overflowed to them in the first place, they might not even have a way of reaching the original agency using conventional methods, Where is the problem?

The Core Problem: Dedicated 911 Trunks

The existing 911 network in the US is dependent on specialized CAMA trunks. Queries for location use the Automatic Number Identification (ANI) received with the call to determine the location of the caller, and a direct peer-to-peer relationship exists between the PSAP and the local exchange carrier 911 Central Office using these single-purpose trunks.

Since these trunks are limited in number, when a non-emergency call arrives on an emergency trunk, that line becomes tied up for the duration of that call, even if the resource that handles the call is a non-emergency resource. This creates a traffic engineering problem, because now the number of trunks reserved to handle emergency calls are taking the additional non-emergency traffic, something that totally Skews the Erlang calculations used to engineer the number of circuits.

311 to the rescue?

Many believe, and cities like NYC and Philadelphia have implemented, a localized 311 non-emergency service designed to offload non-emergency calls from 911 Call centers and call takers. The call handling technology used to deliver a 311 service is similar to that in the 911 center. This allows the 311 facility itself to become a natural choice for a disaster recovery location or if a facility is needed to house a temporary relief workforce for the 911 center due to capacity or physical damage.

The fact that a 311 center exists though, does not itself provide a solution to the problem, a little more is required. The root cause of the overload issue noted earlier is that people dial 911 when they should have dialed 311. In other words, their call is arriving on the wrong network, and that wrong network has limited resources from a trunking perspective.

Are rubber bands the fix?

While fixes for critical emergency communications from the public should never use duct tape and rubber bands, “elasticity” does bring significant value. Looking back on legacy trunking, of nearly any kind, there is the limitation of a physical circuit on a pair of copper wires. If I need one, I order one. If I need 10, then I order 10. If I need 10, but I only can get 8, then I am short by 2, and there is not much I can do about it. SIP trunking, on the other hand, is delivered over a data facility. The actual bandwidth on that facility can often be dynamic and Is commonly referred to as “a pipe.”

When thinking about the characteristics of data, often it equates very nicely to water. If I need to deliver more water, I need to get a bigger pipe; if I need to deliver more data, the same concept applies. That being said, an inherent benefit of a “data pipe” is that often the delivery medium is the same regardless of the capacity or size. Now a request to the carrier can turn-up or turn-down service capacities through software or configuration. Because of this, the size of the pipe becomes elastic and flexible to my current trends and needs.

Re-engineering with new capabilities

With this new elasticity capability in our network, let’s re-engineer things a little bit to take advantage of its capabilities.

Modern NG-911 Network on Dynamic Trunks

With all of these circuits moved to intelligent SIP trunking, I now have flexibility and sizing capabilities that allow me to be more dynamic with emergency and non-emergency call center call routing. The initial overall pipe capacity reflects best guess estimations for ALL TRAFFIC, and a new control layer of communication between my premise and the carrier networks exists to communicate any changes Required in the specific trunk route sizing required.

Sending these real-time statistics and state changes to the carrier allows real-time elasticity of IP trunking size to realize the most efficient use of resources. Calls to 911 are automatically flagged as such and routed to the 911 CPE where call takers answer. Similarly, calls to 311 are automatically flagged as such and routed to the 311 CPE, where call-takers also answer those calls. By doing this, the number of simultaneous calls to each type of service is controlled by the CPE.

Should a 911 call end up being a non-emergency situation, and the call gets transferred to the 311 center for assistance, a signal is sent to the carrier to add additional bandwidth to the inbound 911 trunk group to compensate for the non-emergency call.

How bandwidth is calculated and allocated is something that now becomes totally under the control of the receiving agency. For example, let’s go back to our disaster recovery scenario. A significant natural event is impacting the local area. An anticipated  20% increase of 911 call taker staff will require 15 additional call-taker seats. In the 311 Center, 15 seats get flagged as auxiliary 911 positions and get staffed by 911 personnel. An increase in carrier bandwidth allows for the additional call volume expected.

This scenario is just another example of why the nation needs to move to NG 911 quickly. The Legacy 911 network in the US uses analog CAMA trunks that are special-purpose and fixed in their capacity. Increases must be pre-engineered and may take weeks or months to implement or sit idly unused, causing unnecessary charges to stack up to municipalities. The technology to accomplish this architecture already exists in nearly every commercial market in existence today. We should heed the lessons learned over many years and provide the same level of innovation to our most essential call centers, ones that save lives.

Mark J. Fletcher, ENP
Chief Architect – Public Safety Solutions – AVAYA

Follow me on Twitter @Fletch911
Listen to my Podcasts

Location from A to Z

911? Where is your emergency?

It is a question asked 240,000,000 times a year, according to the National Emergency Number Association (NENA). While it is indisputably the most critical piece of information that the caller has, it is also the most difficult to communicate to the 911 call taker. How can this possibly be in this age of modern cell phones containing location services?  

True, the cellular device you have in your pocket knows precisely the location of where it is. It uses radio signals from the mobile network, GPS satellite positioning information, and the thousands of unique identifiers broadcast by the public and private WiFi access points, known as Base Station Service Identifiers (BSSIDs). Think about it, if you are standing in your favorite Mall and while looking around you see Baskin Robbins, McDonald’s, Sports Authority, and Spencer Gifts, you know exactly where you are. The same logic applies to BSSIDs.

Each time you click on a EULA in an application, you likely agree to share your location data and visible BSSID information with Apple, Google, Skyhook, and other location database aggregators that have amassed billions of data points over the years. Because of this massive data set, the database has become insanely accurate and becomes more fine-tuned every day as more information points fill the database. Unfortunately, this data only captures locations in 2 planes, the Latitude and Longitude, also known as X and Y. The third plane, known as the Z plane, is also one that is critical, as it represents altitude.

In a 30-story building, there is an identical X and Y coordinate on each floor, in the event of an emergency, 1st responders would need the additional Z coordinate to determine the altitude or floor number to determine where help is needed. The Federal Communications Commission hasn’t ignored the problem and has been holding hearings on the issue for some time. This month, at the Monthly Open Meeting, an agenda item is listed as Fifth Report & Order and Fifth Further Notice of Proposed Rulemaking to discuss the issue further.

Exploration of the problem has been attempted in the past. Yet, none of the solutions have provided a workable fix for cellular phones or other endpoints such as fixed lines and MLTS telephones used in commercial businesses. One particular effort was the National Emergency Address Database (NEAD). While this may have had some initial promise for cellular, the additional data needed for MLTS positioning was always questionable in my mind.

Wireless devices are quickly becoming the conventional device being used for communication, as the cellular telephone penetration figure in the US has soared past the 100% saturation level to an astounding 130%, or 1.3 devices for every person in the country according to CTIA. But there is a dichotomy of legislative requirements being applied o this segment of the industry compared to the statutory provisions applicable to multiline telephone systems.

The legacy analog wireline database, initially used for 911 call routing in location reporting, was initially highly accurate as the telephone network engineers meticulously and painstakingly maintained the cabling data. As mobility crept into our lives, those meticulous records went by the wayside, and the much more fluid ‘as-built’ environment came to exist. Compounding the problem even further was device mobility that could now freely take place without administrative control or intervention. Given the actuality of difficulty in location tracking, wireless devices have been granted an exception, when they represent the bulk of the problem. On the other hand, wireline devices are being held to an extreme level of accuracy, at great expense mind you, that seems to profit only the keepers of those databases.

For the record, I fully admit that no location can be too accurate in the time of an emergency. But, what I do oppose, is technology requiring an over-prescriptive solution adding additional cost and complexity while providing very little actual data that is actionable, edit levels that go far beyond that required for other technologies.

Unfortunately, many of those writing legislation and regulations, have never set foot in a 9-1-1 center or control room. Many of them have never responded to an emergency as a first responder. And many of them have no idea what information it Is considered actionable to those brave enough to have taken on those jobs. Maybe it’s time to start taking a look at the mission and forgetting about the technology for a brief moment. In the event of an emergency, people need help. While ideally, assistance should come from a qualified first responder, helped can come from anyone anywhere. And by alerting other bystanders In the immediate area, they can assist in directing first responders, when they finally do arrive, to be the most appropriate location.

Are we not focusing on the human element because we have become so immersed in technology that flashing lights buzzers and bells must be part of the solution? Have we decided to ignore the value of our fellow workers, bystanders, in those not directly involved in the emergency but aware of it? Let’s regulate and legislate intelligently and effectively. Let’s utilize technology where technology can help; while not becoming mired within the technology, where the solution becomes anti-productive due to complexity.

We continue to fund the upkeep and maintenance of an antiquated, legacy infrastructure that is well past its prime. We are also siphoning valuable budget dollars away from new technology that could be put to good use to solve many of the problems that exist today. Why not use the data that we have intelligently and not in an over-prescriptive manner that will create management problems of the data making it less accurate and reliable overall?

Mark J. Fletcher, ENP
Chief Architect – Public Safety Solutions – AVAYA

Follow me on Twitter @Fletch911
Listen to my Podcasts

July 4th | 9‑1‑1 | Fireworks – A Perilous Combo?

Back in 1980, when I was a police dispatcher in Sparta New Jersey, I can remember that inevitably every year on July 4th at about 8:00 PM, nearly every line on the phone would light up. For the most part, the conversation would go something like this:

Me:      “Sparta Police, dispatch”
Caller:  “Uhhm . . . yeah . . .  Can you tell me what time the fireworks start?”
Me:      “Same as last year sir, at dusk, usually right around 9:00PM”
Caller:  “OK . . . Thanks”

Not every call asked this, there were some interspersed inquiries:

Me:      “Sparta Police, dispatch”
Caller:  “Uhhm . . . yeah . . .  Can you tell me where I can WATCH the fireworks?”
Me:      “Probably in the sky . . . ”
[OK, so maybe my snarky attitude wanted to say this, but of course I remained professional]

The SAME call scenario then repeated for nearly the next hour, over and over and over. Much of the time, every available line would be lit, and every caller had the same question. In a way, it was almost comical.  The residents of these 3 tiny municipalities, a total population of 30,000, were under my care, but I was unable to help them in an emergency as I was tied up answering these calls. There I sat, all by myself, hoping and praying that no one was experiencing a REAL emergency and needed a real response for help. In an effort to break up the monotony, at times, I answered the phone with:

Me:      “Sparta Police, dispatch . . . the fireworks start at dusk”z
There was usually a long silence and they would respond, slightly confused
Caller:  “Uhhm . . . Thank you?”

Eventually, just as this rash of calls started to diminish, the next wave started to come in:

Me:      “Sparta Police, dispatch”
Caller:  “OK, hi . . . so . . .  there are a bunch of kids with fireworks over on East Shore Trail”
Me:      “Ok, can you tell me what any of them are wearing or which way they are heading?”
Caller:  “Nope, but they are raising hell over here and I am trying to sleep”

But that was 40 years ago, and times were very different. The communications technology was in its infancy, and everything was written down on punch cards, and time-stamped on a time clock (ka-chunk, ka-chunk). There was no 9‑1‑1 in my center, just POTS lines on a 1A2 Key system. Heck, while 9-1-1 may have existed somewhere in NJ back then, I didn’t know of anyone in the State that had it; and as for caller ID? Yeah, right! Ha ha ha! That was still a far-off fantasy. Back then, we worked under the bare minimums. Today, with four decades of techno-babble under my belt, quite a bit of self-taught programming in BASIC, QuickBasic+ and a little bit of C+, my favorite new word has become ‘workflow’ or scripting. At the core, a program is based on a flow chart. A list of actions and decisions that happen in a logical predefined order to create some effect or outflow of data. I quickly realized that when workflow was applied to nearly any problem, the resulting solution was often both effective and innovative. I may have automated a monotonous task.

The number of times I typed:
NCICQV.NJ0191800.LIC/768KUL.LIS/NJ
to do an NCIC check, has to number in the tens of thousands. . . .

or it may have just provided consistency in the data entry. In fact, some of the most innovative ideas are simply a combination of tasks strung together to solve a problem.

This is where AI can directly lend itself to enhance any industry – through automation. There should be no great surprise, as industry has realized this back when Ford implemented the Assembly line. But, before I get too deep into this particular topic, I want to make one thing perfectly clear to my readers, while artificial intelligence can greatly assist in making decisions, we are not talking about totally autonomous AI. Realistically, we are likely still a long way off from true artificial intelligence. This is because common sense is not always a binary decision. But, one thing that we can benefit from today is the mathematic probability and the assistive advice that AI can provide. This is where we need to start to change our thinking, especially in areas of public safety or critical life affecting decisions, such as the medical field.

I’m liking this to the change in thinking that has taken place with testing in schools. When I was growing up, calculators still we’re still uncommon. Bringing one into a test would be considered ‘cheating’. Now, along with the text books that are required for a particular class, advanced engineering courses require a scientific calculator, and often suggest several models. Keeping this frame of thought in mind, let’s revisit the first example I mentioned previously in this blog, but this time, I’ll apply some assistive AI logic, and present this solution in the form of a simple flowchart:

EXMPLE JULY 4th CALL SCREENING WORKFLOW

The simplified logic here is fairly easy to understand. When a call arrives, the following decision points are considered.

• . Do I have a Call Taker Available?
• . If I do, then deliver the call. If I don’t, then determine if:
• . Is it July 4th between 20:00 and 21:00?
• . If not, que to the call takers, but if it is, intercept and play an informational message about where the fireworks are, and even direct them to the web for more information and safety tips.

Ideally this could eliminate many of the calls from tying up call takers, but those that need to speak to them are placed in queue, or routed elsewhere

This is done easily as once we play the message, we ask if they need further assistance, and disconnect, queue as needed, or even branch further to other common information resources.

Plan 9 from Outer Space?

Now, here is where we can really get a little far out with a solution.

By prompting the caller with an IVR, we can ask them if they’re calling from a mobile device?
(remember, in many markets this is a 80% – 90% of the call volume)

If the caller is on a text enabled device, we can clear them off the 9-1-1 line while offering them a more informative and interactive experience by simply pushing a web link to their device. Once the citizen clicks on the link, very simple HTML 5 technology can be embedded in the webpage that can extract their specific location, after they agree to share it, and then based on the response provide geo-targeted information that would be relevant to the caller.

This is a great transition into NG311 services, something that I’m getting asked about nearly every week. I’m convinced that the biggest success factor for a government 311 service, is the user awareness programs and publicity created by agencies. This could significantly reduce the number of  ”Information calls” into the 9‑1‑1 system, while providing a public resource, and an excellent EOC environment during disasters, as the basic premise of 9‑1‑1 call taking utilizes identical infrastructure on the backend.

I believe that this is one of the areas where Avaya brings technology to the table that a normal public safety vendor does not. They have the luxury of focusing on a very narrow use case of emergency services requests. But as communications evolve and become more multimedia in nature and omni- channel, the communications architecture embedded within public safety must involve with it or it wil lbe left behind, again. Those that want to play it safe by remaining stagnant, are actually depriving constituents of modern communications that could save lives.

To the current Sparta Chief of Police Neal Spidaletto, I remember you back in the early 80’s running around the house like a little terror, driving your Dad crazy. Congrats on your appointment as Chief, I am sure Joe is very proud of your career and accomplishments.
(https://www.njherald.com/20170606/sparta-swears-in-police-chief-promotes-3-officers)
please tell ‘Baby Face Joe’ that Fuzzy says he still looks great and as distinguished as he always did. Always a great friend, and I cherish the many shifts we worked together.

Please remember to follow me on Twitter @Fletch 911, check
out all of our other podcasts at http://www.Avaya.com/APN

Listen and subscribe on iTunes, Google Play Music, and
SoundCloud, as well as our featured content on the iHeart radio network.

FIXED: Cellular E911 Location

The two biggest issues with cellular emergency services:
Text to 911 and Cellular Location Accuracy

But the question is, how can this be so in today’s ultra-modern broadband connected world?

The answer, it turns out, is simple. The Emergency services network no matter where you are located is, for the most part, an analog-based legacy infrastructure with only the ability to convey VOICE calls and no data services. Because of this simple fact, we have pigeonholed ourselves into a quagmire of isolation from the modern communications capabilities that have become commonplace and inherent in the devices nearly all of us seem to be carrying.

How do we extract ourselves from this destitute pit of captivity? The answer is quite simple. We need a rope, and it just so happens that Google has decided to provide that lifeline, with of course a brand-new acronym; AML for Advanced Mobile Location.

Currently, on the network side AML is  only deployed in Estonia and in the United Kingdon however, the functionality (which has been code-named ‘Thunderbird’) is actually embedded in every current  Android device with operating systems from Gingerbread forward. To discuss the history of Thunderbird, and how it came to be, I sat down for a Podcast with European Emergency Number Association Executive Director, and colleague of many years, Gary Machado.

Listen to the Podcast here:


Fletch:
The big story in the news is location and emergencies in cellular phones, and you guys have really come up with something that’s pretty interesting over in Europe. Tell us about AML?


Gary:
Thank you, Fletch. Yes, we came up with AML, which stands for Advanced Mobile Location, a few years ago. Actually, the idea is not ours. The Advanced Mobile Location was created in the UK in 2014 by a guy named John Medland, who works for BT 999/112 emergency services.

He basically lost faith in the EU’s ability to regulate of the sector and to contribute to the improvement of caller location in Europe, so he decided to start talking with the handset manufacturers and the mobile operators here in Europe, what in the US you call I think carriers, and he came up with a simple idea: how can we find an easy way to retrieve the location data that is in the phone that we all use everyday to order pizza, to order Uber, et cetera, and how can we take this data and deliver it to the PSAPs as easily as possible?

That’s how the project started. John led the whole project in the UK. It started slowly in 2014 with AGC, the handset manufacturer, and one mobile operator named EE, and since then, AML has been very successful. We have about 85% of locations that are below 50 meters, within 50 meters, and AML has been extended to other handset manufacturers, namely Alcatel, Sony Mobile, Samsung devices, and extended also to other mobile operators in the UK.


Fletch:
I think the big thing was when Google jumped onboard. Google saw what John had proposed doing, and basically in a nutshell, the way I explain it to people is, when the carrier, when the mobile operator looks from the network towards the handset, it’s one view, but when the handset looks out towards the world, they can see much more. It’s like looking through a peephole on a hotel room door the wrong way, right?

From the carrier side, you get a very myopic view of where that device is, but the device can take advantage of cellular, it can take advantage of GPS, it can take advantage of WiFi signals that [can be seen], not necessarily connected to, but just seen, and then all of that information together [delivers] a much more accurate resolution. One number that I saw published was 4,000 times more accurate?


Gary:
Yes. Fletch, I want to say I love the way you describe it, which is exactly correct. What happens, we actually happened to meet Google at the right time, were starting to look into the project, they were wondering on how to get this information delivered to the PSAPs, and so we actually bridged between BT in the UK, Google and ourselves and we started to have about a conference call per week, basically, and we started to progress, let’s say, the Google way, which is very fast. Yes, as you said, Google wanted to benefit from the use of their Google fused location provider and have this accurate location information we use everyday installed on all Android devices in the world. That was what they were trying to achieve. Since they saw the success of the project in the UK, which was running on Android devices already, on Android-based smartphone manufacturers, they decided to work with us and

Since they saw the success of the project in the UK, which was running on Android devices already, on Android-based smartphone manufacturers, they decided to work with us and BT to, let’s say, upgrade all the devices in the world with this accurate location. Now, where are we right now? All Android devices in the world back to Gingerbread have been upgraded with Advanced Mobile Location, so it’s in every Android phone in the world, besides a few phones that haven’t been updated because they haven’t been charged or connected to the WiFi and didn’t get the update, of course, but otherwise it’s already

Now, where are we right now? All Android devices in the world back to Gingerbread have been upgraded with Advanced Mobile Location, so it’s in every Android phone in the world, besides a few phones that haven’t been updated because they haven’t been charged or connected to the WiFi and didn’t get the update, of course, but otherwise it’s already in your phone. If you have an Android phone, AML is there. You just have to check your phone, look for the Google Play Services, and if you have a version of Google Play Services which is something like 9.0+, then you have AML in your phone. AML

You just have to check your phone, look for the Google Play Services, and if you have a version of Google Play Services which is something like 9.0+, then you have AML in your phone. AML is deployed in two countries in Europe. It is fully deployed in the UK and Estonia.

That means that everyday, UK and Estonian emergency services receive extremely accurate location information, again, 85% at below 50 meters using GPS or WiFi location, and yes, when we look at the figure, it’s about 3,000 to 4,000 times more accurate than what we get in Europe currently, which is only the primarily cell ID.


Fletch:
Before everyone runs out and turns on AML and expects this incredible accuracy to be there, there is the other side of this, and that’s the 911 center, the emergency center, the PSAP has to be able to, or the network I should say, has to be able to receive this data. One of the pieces of AML is a destination for this information to be sent, so that’s got to be in place, too. Now that’s the carrier responsibility.


Gary:
Yes. I would say the beauty of this project is its simplicity. When you dial an emergency number, 112, 911, it will trigger AML in your phone if you’re in a country where the service has been activated; in other words, where PSAPs are able to receive the information. Once you dial this number, it triggers the AML for 20 seconds, collects the location information and sends it over to the PSAPs over a mobile network.

Now there are two ways of doing that. The first way is using SMS. There are two kinds of SMSs that are used. I will not get into the specificity of those, but these two SMSs are working. One of these two can be implemented in any country. Either the message can be sent to an SMS endpoint, which is what both BT, our organization, EENA, and Google recommends, because it works in most cases, SMS, and it’s actually extremely reliable. So it can be sent to an SMS endpoint or it can be sent over HTTPS to the emergency services. Emergency services are free to choose.

In Europe, we work at the country level. [Governments] are free to choose whether they want SMS or if they want HTTPS. For now, in Europe, we have SMS installations, but other countries are deploying an HTTPS endpoint to be able to receive the AML data.


Fletch:
I’m going to assume that when you bring your handset online and you get your configuration from the carrier that this AML destination would be part of that provisioning.


Gary:
Yes. Actually, it’s managed by Google. Google defines the emergency numbers that should activate the service in a country. If a country has several emergency numbers, those numbers will trigger the AML service, which will turn on for 20 seconds and collect the location data, and then send it over to this endpoint selected by a country or a region or a county. Basically, what’s to be done by the PSAPs, the authorities and/or the mobile operator or carrier in the US, it’s very simple. Google needs to know the endpoint to be able to deliver that message. They need to be provided by an endpoint. The carrier needs to, for instance, in case of an SMS, allow it to be free of charge, and that’s what we have in most countries in Europe already with SMS for the deaf and hard of hearing, and/or they need to provide for an HTTPS endpoint to be set up, which often in the US I believe has been at the carriers rather than in the PSAPs. In Europe, we have a different setup for these things.


Fletch:
The very first thing people are going to complain about it is, “Hey, wait a second, Gary, if this thing gets turned on, Google’s going to start tracking my location. It’s bad enough that they know every website I go to and they’re putting cookies all over my phone, now they’re going to be tracking my specific locations and what I’m doing. I’ve already got the NSA in the US doing that. I don’t need Google on top of that doing the same thing.” Is there going to be pushback?


Gary:
As you can guess, we get it over here in Europe even more than in North America. People are very, very concerned about it here. I can say I have myself a certain interest for these issues. I actually help some of the privacy activist organizations here in Brussels on my private time, let’s say, and I never switch on my location on my own, for instance, but in case of emergency service, I want to have my location turned on. The beauty of this project and working with Google for more than a year, they have been extremely cautious with that. The location just turns on for the time of triggering the AML and turns off after 20 seconds. Google does not store that location. Google doesn’t want to see that location. That location is retrieved and is sent over to the PSAPs in an SMS or HTTPS, and that’s it. Google doesn’t want to see that location. I think, honestly, no one is [inaudible 00:11:05]. Google has plenty of locations everyday. I don’t think they are looking for more of that project. That’s not what they are looking for.

The location just turns on for the time of triggering the AML and turns off after 20 seconds. Google does not store that location. Google doesn’t want to see that location. That location is retrieved and is sent over to the PSAPs in an SMS or HTTPS, and that’s it. Google doesn’t want to see that location. I think, honestly, no one is [inaudible 00:11:05]. Google has plenty of locations everyday. I don’t think they are looking for more of that project. That’s not what they are looking for.


Fletch:
So they never even get the data to be able to store it. It goes directly into the public safety networks.


Gary:
Exactly.


Fletch:
Let’s face it, if you’re having an emergency, your location is something that you probably want to share. 


Gary:
Yes, exactly. That’s the case, and I’m sure it’s the same in the US, but in Europe, we have the proper legislation for that, that in case of emergency call, caller location is authorized. Yes, that’s one of the very few times where you actually need and you want your location to be used.


Fletch:
I’ve got to tell you, when I first saw this back in 2014 over in Europe, I was a little hesitant. I was a little hesitant because it was operating system-specific. At that time it was carrier-specific and even handset-specific, and [I thought], interesting idea, but it’s going to be the adoption that really makes this happen, and although it’s taken a couple of years, it is actually a great idea. It’s very simple in its form, it’s very basic. It doesn’t require a big uplift in the network. It doesn’t require huge upgrades in the PSAPs. It’s just a simple activation of information that’s already there, and it’s information that most devices already have anyway. Again, like you said before, if I want to order a pizza or if I want to order an Uber, they know exactly where I am with incredible accuracy, so it’s just activating that function that’s already there and creating the mechanism to transport that over to the PSAP, the people that actually need to use that. Really kind of a brilliant idea and John, John’s a great guy and I’ve known John for many years over at BT. It really took a lot of stamina just to keep pounding his foot down and saying, “This will work,” and getting Google in there is a big deal. Obviously the big question, what about iOS and Apple and Microsoft? What’s happening with those guys? Have they mentioned anything about this?

It’s very simple in its form, it’s very basic. It doesn’t require a big uplift in the network. It doesn’t require huge upgrades in the PSAPs. It’s just a simple activation of information that’s already there, and it’s information that most devices already have anyway. Again, like you said before, if I want to order a pizza or if I want to order an Uber, they know exactly where I am with incredible accuracy, so it’s just activating that function that’s already there and creating the mechanism to transport that over to the PSAP, the people that actually need to use that. Really kind of a brilliant idea and John, John’s a great guy and I’ve known John for many years over at BT. It really took a lot of stamina just to keep pounding his foot down and saying, “This will work,” and getting Google in there is a big deal. Obviously the big question, what about iOS and Apple and Microsoft? What’s happening with those guys? Have they mentioned anything about this?

Really kind of a brilliant idea and John is a great guy.  I’ve known him for many years over at BT. It really took a lot of pounding his foot down and saying, “This will work,” and getting Google in there is a big deal. Obviously the big question, what about iOS and Apple and Microsoft? What’s happening with those guys? Have they mentioned anything about this?


Gary:
First, I want to join you here in saying I really admire what John has done. He’s taken this idea, he’s been fighting for it. He’s been going step by step. He’s very cautious. He wanted to validate every step of the project. We owe John a lot, as all in the public safety community, I believe. I also want to thank the guys at Google, of course, and also congrats to the Estonians. The Estonians implemented AML in less than six months with Google and they are one of the countries that are fully enabled right now. About Apple and Microsoft, we are in contact with Microsoft, trying to get some information, some progress on this. At this stage, we do not see a lot, but we are hopeful that it will progress. We are also trying to get in touch with Apple. We’ve informed Apple via many emails, conference calls and so on. We haven’t seen a lot back from Apple, though we actually discovered just by Googling one day that Apple has published a patent on the location topic, which seems to be rather an idea pretty similar to what we’ve just talked about during this podcast. Very interesting. Very interesting. We’re hopeful that Apple will join the project. We also started to see the first articles, one article in Estonia last week, clearly explain that they believe that Apple will start joining the

We haven’t seen a lot back from Apple, though we actually discovered just by Googling one day that Apple has published a patent on the location topic, which seems to be rather an idea pretty similar to what we’ve just talked about during this podcast. Very interesting. Very interesting. We’re hopeful that Apple will join the project. We also started to see the first articles, one article in Estonia last week, clearly explain that they believe that Apple will start joining the project, because people will think of Google’s Android phone as the safe phones. That was an opinion written in an Estonian article, which is in English.


Fletch:
I have to agree with that. If somebody’s going to make a telephone purchase and this one has got safety features that this one does not, that’s going to become a decision. If I’m going to buy a phone for my daughter who’s going off to college now, I’m going to make sure she’s got a phone that’s going to provide her with as much safety as possible. That’s going to bring the financial model into play and it’s not going to be long before somebody over in Cupertino says, “Hey, wait a second, sales are going down. We need to turn this on,” and Microsoft’s going to do the same.


Gary:
Let’s hope so. Apple Keynote is coming out soon, so, let’s wait.


Fletch:
Listen, Gary, it’s always a pleasure to talk to you. It’s been a while since we’ve chatted. I really appreciate you taking the time to talk about this. Tremendous progress on this. Congratulations to everybody over at EENA who drove this, and of course to John Medland over at BT, who had the brainchild and the fortitude to get this program moving.


Gary:
Thanks, Fletch. Bye-bye.

Does 911 Work in Government Buildings?

On February 22nd, 2012, President Obama signed H.R. 3630, also known as the Middle-Class Tax Relief and Job Creation Act of 2012  into  law. In this Act, under Section 6504 -REQUIREMENTS FOR MULTILINE TELEPHONE SYSTEMS- it  states explicitly that “[T]he Administrator of General Services, in conjunction with the Office, shall issue a report to Congress identifying the 911 capabilities of the multiline telephone system in use by all federal agencies in all federal buildings and properties.” The GSA, in addition to being the purchasing arm of the US Government, is the agency responsible for constructing, managing, and preserving government buildings by leasing and managing commercial real estate. According to their website, http://gsa.gov, the agency also promotes management best practices and efficient government operations through the development of government-wide policies, and their mission is “[T]o deliver the best value in real estate, acquisition, and technology services to government and the American people.” In total, they are responsible for nearly 10,000 federally owned or leased buildings, all of which would have been covered by the aforementioned GSA report that was required by Congress. It only seems logical that the US Government, a large Enterprise in itself, would have the same concerns that commercial businesses have with proper 911 access from Federal Buildings.

The Dog Ate my Homework

As of Saturday, June 18, 2016, that report remains 1308 days (three years and seven months) past due. The Act also required that no later than 90 days after the date of enactment, a notice is issued seeking comment from MLTS manufacturers on the feasibility of including within all systems manufactured mechanisms to provide sufficiently precise indications of a 911 callers location.

MLTS manufacturers have long since responded with features and functionality to address emergency calling from these types of systems systems, and most, if not all, contain the basic capabilities to deal with the situation, requiring add-on functionality for only the more complex environments. There still remains, however, a lack of awareness and in many cases these features are not properly configured or  implemented. This simple lack of awareness leaves many government employees at risk. History has proven time and time again that this problem knows no boundaries  affecting schools, businesses, hotels, and any other facility where a multi-line telephone system is used. While admittedly, surveying all 9,600 properties reportedly under the control of GSA, the mandate ordered in this Law was not to remediate the problem; the mandate was to produce a report on the scope and expanse on the problem.

What You Don’t Know MAY Hurt You

It is only with the information from this report that the facts become well understood, and assessments of the risk can be made. If nothing else, awareness of the problem will be raised.  Despite the current situation, has every new facility opened or upgraded in the past three years had this situation addressed? Likely not. The problem is well known, and documented, and to ignore it at this point is simply foolish and borderline egregious.

Case in point, the Federal Communications Commission headquarters building in Washington, DC itself was noncompliant and unable to dial 911 directly, as reported by FCC Commissioner Michael O’Reilly in his June 2, 2014, blog. Commissioner O’Reilly reported, “Our employees and any visitors must dial 9-911 to reach help in an emergency.  I asked that the agency look into options for fixing this problem.  Since then, we have learned how simple reprogramming our telephone system would be.” A short time later, Chairman Tom Wheeler ordered the system to be reprogrammed, and FCC staff are now able to dial 911 directly.

This glaring lack of compliance for basic emergency calling could have been noted on a report issued by the GSA on multiline telephone system capabilities for emergency calling, had they produced one. But unfortunately, they did not, and as of this point that report is more than a year and a half overdue. How many other buildings suffer this same ailment? Likely many if history in the Enterprise space is any indicator.

fcc-commissioner-ajit-pai-cropOn March 11, 2015, FCC Commissioner Ajit Pai sent a letter to acting GSA Administrator Denise Turner Roth asking about the status of this report directly requested by Congress, and as part of the Law enacted with HR 3630. At the time the letter was sent, the report was 843 days overdue, yet to this date, there has been nothing but silence from the GSA. One has to wonder, if we need to wait for another tragedy to occur, and an innocent life lost before we recognize this simple problem and address it? The other burning questions are; Why is the GSA withholding this information? Have they done any work at all in the past 3 1/2 years? Are they worried that they are so out of compliance that a considerable expense would be required to correct the issue?

Is is Broken? Then FIX IT!

If the GSA is responsible for facilities and the technology, I am sure this also includes maintenance coverage for ‘break-fix’ matters that come up from time to time. I will offer the point of view that if my phone system will not dial 911 effectively and report the proper information to local emergency services personnel, then that system is broken, and should be fixed. We can no longer ignore this critical life safety issue. Additionally, how bold do you have to be to ignore a formal request by an FCC Commissioner? Obviously, brave enough to also overlook a mandated order by the U.S. Congress, as designated by Federal law.

One also has to wonder, where is the US GAO in all of this? This independent, nonpartisan agency works for Congress and is often called the “congressional watchdog,” part of their job is to investigate how the federal government spends taxpayer dollars. If MLTS systems were purchased, and not able to dial 911, I would imagine that could be argued as a point of dispute, between the US Government and the supplier. At least for any system purchased and installed after Congress passed the bill and it became law.

Who’s shoulders does this fall on? According to their web page, the head of GAO, the Comptroller General of the United States, is appointed to a 15-year term by the President from a slate of candidates Congress proposes. Gene L. Dodaro became the eighth Comptroller General of the United States and head of the U.S. Government Accountability Office (GAO) on December 22, 2010, when he was confirmed by the United States Senate. He was nominated by President Obama in September of 2010 from a list of candidates selected by a bipartisan, bicameral congressional commission. He had been serving as Acting Comptroller General since March of 2008.

Who Let the Dog Out? No One

If the GAO is the “Congressional watchdog”, shouldn’t they look into this issue? I believe so. Transparency, openly ignoring authority, and failure to perform tasks that are legally obligated seems to be something that would be right in their wheelhouse.

Follow me on Twitter @Fletch911
Read my other AVAYA CONNECTED Blogs

Mark J. Fletcher, ENP is the Chief Architect for Worldwide Public Safety Solutions at Avaya. As a seasoned professional with nearly 30 years of service, he directs the strategic roadmap for Next Generation Emergency Services in both the Enterprise and Government portfolios at Avaya. In 2014, Fletcher was made a member of the NENA Institute Board in the US, in 2014 – 2015 he served as co-chair of the EENA NG112 Committee in the European Union, providing valuable insight to State and Federal legislators globally driving forward both innovation and compliance.

 

Post navigation

Leave a Reply

Why cellular 911 has location problems

For those of you who read my regular Blog here, I am happy (and proud) to announce that Network World has graciously given me a regular Blog on the Network World site.

I will not be duplicating content from this blog. The Network World content will be all original. Also I will not be posting the NWW content here, but will provide a brief synopsis of the NWW content a day or so after it is published, this week I bring you:

Why cellular 911 has location problems

Most calls to emergency 911 come from wireless callers, yet the system for locating those callers can’t handle them.
Enjoy!

 

Follow me on Twitter @Fletch911
Read my other AVAYA CONNECTED Blogs

Mark J. Fletcher, ENP is the Chief Architect for Worldwide Public Safety Solutions at Avaya. As a seasoned professional with nearly 30 years of service, he directs the strategic roadmap for Next Generation Emergency Services in both the Enterprise and Government portfolios at Avaya. In 2014, Fletcher was made a member of the NENA Institute Board in the US, in 2014 – 2015 he served as co-chair of the EENA NG112 Committee in the European Union, providing valuable insight to State and Federal legislators globally driving forward both innovation and compliance.

 

Predictive Assistance via Caller Context

A concern that can exist in nearly any city, county, state, or even country, is that once an easy to remember emergency number, such as 911 in the US, 112 across the European Union, and the 999 available in the UK, has been deployed, massive misuse of the system by non-emergency calls starts to put strain on the network; equipment and even staff must now cope with the increase of non-emergency citizen outreach beyond the purpose of the service. Because there isn’t a catchall category of call types, there often isn’t a single, all-encompassing solution to the problem. Technology can help and when properly deployed, is capable of providing support for dealing with many of the strains that are put on Emergency Networks and Systems.

The Architecture Problem:

 

BLOG-PO-Pic1
Fig. 1 Silos of Call Types for Public Safety and Citizen Services

 

In the past, when we built and designed Public Safety networks, the solutions were siloed, purpose built creating disparate, disconnected islands of connectivity. An agency decided what their inbound traffic would be for that particular service, and then engineer the incoming trunks for a P.01 grade of service, meaning that 1 out of every 100 calls could be blocked during the busy hour. This is a standard level that is accepted by the Public Safety industry for Public Safety Answer Points.

But this creates a problem when a service (9-1-1 for example) receives more calls than expected. Typically, they would track analytics and call volume reports that displayed trend information. These reports guided them on the increase of the number of positions and trunks to handle the new projected call loads. You would think that expansion should not be a problem for agencies, as they are tasked with providing service to a geographic area, and when the population increases, call volumes increase and budgets should naturally increase.

Unfortunately, however, quite often population increases along with call volume, but agencies are always being asked (read demanded) to do more with less.

BLOG-PO-Pic2
Fig. 2 Interagency trunking disrupts traffic engineering formulas

While other organizations may be able to aide with the call volume, the problem of citizens dialing 9-1-1 for everything and anything still exists. Because the network was built as independent islands of service, virtual inter-agency barriers naturally evolved. In specific cases, inter-departmental trunking can be created that allows adjacent agencies to transfer calls over those facilities directly. Now the caller is communicating with the right resource that can assist them, and we have freed up the original 9-1-1 resource to allow them to take another call, but we create another problem on the back end.

 

BLOG-PO-Pic3
Fig. 3 – Emergency Services IP Network (ESInet)

Although the issue of routing is solved, the problem still exists where the limited trunking that connects the 9-1-1 center to the PSTN remains an issue and another blockage point. This blockage is easily corrected. By removing these trunks from the equation, and replacing or augmenting them with an IP pipe that is dynamically expanded and contracted as needed, based on the application of rules logic that takes into consideration the number of available 9-1-1 call takers that are currently available and ready to take calls.

 

While I realize that every Public Safety person who is reading this just got a chill up their spine, and muttered, “Your CRAZY Fletch”, this is what needs to happen to solve the problem, and is not new bleeding edge technology. in fact, local carriers have been offering SIP-based trunking to the commercial market for years. The technology has been refined and the largest contact centers in the world use this architecture to bring calls into their network, where they decide the best resource to apply to the inbound call.

BLOG-PO-Pic4With the right tools on the right network, solving these type of problems becomes simpler and a routine process in the contact center, and there is no reason why this technology and thought process cannot be applied to Public Safety Answer Points to assist in improving efficiency and reliability during large-scale national disasters. At the same time, this can also radically improve service to callers. For example, meet Ava. Ava requires 911 services on a regular basis. She is considered to be, what Public Safety has nicknamed, a ‘Frequent Flyer.’
This term is not meant to be derogatory, in fact, Ava has a medical condition that requires Emergency Transportation much more often that the average citizen, but her condition is not life-threatening.

When Ava calls 9-1-1 for medical transport, most of the time, resources are available and dispatched immediately. But on occasion, Ava’s request arrives in the middle of complete chaos. Because the 9-1-1 network is unable to differentiate Ava’s call from any other call being processed by the system, all calls are treated with the same priority level, despite the vast prior history and information that may be available. By collecting and examining this information in a context store, and associating it with a particular call event can dynamically apply specialized call handling. Simply by knowing that Ava is a frequent flyer caller, and her condition is not life-threatening, her call is answered by a Speech Recognition enabled IVR that collects the relevant information giving Ava the opportunity to escalate the call to a call taker.

N11 – More than just Emergencies

9-1-1 has been called the most widely recognized ‘brand element’ in the world. Nearly everyone is aware of the number, and despite the attempt to increase awareness of other avenues of access, 9-1-1 remains to be the winner. Unbeknownst to many in the US, several other N-1-1 services are available to citizens. In most of the cases, these are geographically routed the same way 9-1-1 emergency calls are routed to centers that are close to the caller. Following the N-1-1 format, these easy to remember numbers are as follows:

2-1-1  Reserved for the World Health Organization and Red Cross
3-1-1  Reserved for local government non-emergency services
4-1-1  Not officially reserved, but often used for local Telco information
5-1-1  Reserved for Highway and Traffic information systems
6-1-1  Not officially reserved, but often used for local Telco repair
7-1-1  TDD Relay services for Deaf, Hard of Hearing or Disability
8-1-1  Reserved for the Call before You Dig utility mark-out hotline

While these services can often provide valuable information to citizens, they are often under-publicized, and under-utilized. By consolidating connectivity in the cloud, we gain flexibility in dynamically adjusting the trunking required, and calls destined for other agency remediation. This can effectively eliminate the public education and awareness problem. While the dialed number can be an indicator of the nature of the request, calls can still be handled efficiently, and resources are no longer limited and blocked.

Proactive Citizen Outreach

When a known issue exists, reaching out to the public in an affected area can be an efficient and dynamic countermeasure that can significantly reduce the number of inquiries for more information while reassuring concerned citizens that an issue is being addressed. In addition to providing information, a query can be made to ensure no other problems exist. If the citizen does have an additional concern, the system is already ‘context aware’ of the identity of the citizen, and they can be queued up against the appropriate resource. Upon connection to the person or agency that can provide the additional information they need, information about the previous interaction can be displayed to the call taker, facilitating quicker response and better service levels.

Follow me on Twitter @Fletch911
Read my other AVAYA CONNECTED Blogs

 

Mark J. Fletcher, ENP is the Chief Architect for Worldwide Public Safety Solutions at Avaya. As a seasoned professional with nearly 30 years of service, he directs the strategic roadmap for Next Generation Emergency Services in both the Enterprise and Government portfolios at Avaya. In 2014, Fletcher was made a member of the NENA Institute Board in the US, in 2014 – 2015 he served as co-chair of the EENA NG112 Committee in the European Union, providing valuable insight to State and Federal legislators globally driving forward both innovation and compliance.

Mr. Hunt Goes To Washington

It was a comfortable Spring afternoon when Hank landed at the Reagan National Airport. He was not there to see the sights, or take one of the many tours of our national treasures. Hank was there for a much more important reason, to honor the legacy of his daughter, Kari Rene Hunt, and the meaning that her life has recently become. Just 865 days earlier, after the tragic murder of his daughter in a Texas hotel room where his granddaughter was unable to directly dial 911 because the MLTS phone system required a 9 before any outside call, Hank was getting ready to tell his story to the Congressional Energy and Commerce Subcommittee on Communications and Technology. Just last year in December 2015, Hank’s Congressman, Representative Louis Gohmert (R-TX-1) sponsored H.R.-4167 (Kari’s Law Act of 2015) in the House of Representatives, and it was referred to theSubcommittee on Communications and Technology.

Many that claim that emergency calling from an MLTS is not a huge problem. When Avaya first brought this issue to the FCC in an open letter to the FCC Chairman, the Honorable Tom Wheeler on December 27, 2013, with a cc: to Commissioner Mignon Clyburn, Commissioner Jessica Rosenworcel, Commissioner Ajit Pai, and Commissioner Michael O’Reilly.

It was this letter, and the companion tweet on Social Media that caught the eye of FCC Commissioner Ajit Pai, resulting in an initial meeting with the Commissioner and his staff in January  2014. As most people are when they first hear the story, the Commissioner was astonished at the claim that many businesses, schools, and most hotels could not access 911 directly from the telephones deployed. To validate our claims, the Commissioner launched an inquiry to the top 10 hotel chains in the United States asking them these 5 specific questions about their emergency calling environment:

  • How many hotel and motel properties in the United States does your company own?
  • In how many of those properties would a guest dialing 911 from the phone in his or her room reach a Public Safety Answering Point or 911 Call Center? In such cases, does the phone system also alert a hotel employee that an emergency call has been placed?
  • It how many of those properties would the guest dialing 911 from the phone in his or her room reach a hotel employee? In those cases, have hotel employees answering such calls received appropriate training in how to respond to emergency calls?
  • In how many of those properties would a guest dialing 911 from the phone in his or her room not complete a call to anyone?
  • If your company has any properties where a guest dialing 911 from the phone in his or her room does not reach emergency personnel, what is your company’s plan for remedying the situation? If you do not have a plan, why not?

At the NENA 911 goes to Washington conference in Washington DC in March 2014, Commissioner Pai reported the results of those inquiries, which were as follows:

  • Consumers may be unable to dial 911 directly at tens of thousands of buildings across the United States.
  • American Hotel and Lodging Association (AH&LA) survey data indicates that guests reach emergency services if they dial 911 without an access code in ONLY:
    • 44.5% of franchised properties
    • 32% of independent hotels
  • The vast majority of the 53,000 lodging properties in the United States are managed by independent owners or franchisees

While much progress has been made, as the fix for this problem is inherent in most modern MLTS/PBX systems today, the problem is still widespread. In fact, at the Choice Hotels franchise Comfort Inn, in Alexandria, where Hank and I stayed in was not able to dial 911 directly from the rooms. Recognizing the manufacturer of the telephone console that the front desk, I knew that the system was capable of doing it, yet it was not programmed properly, a poignant reminder that, without legislation and an enforcement mechanism, voluntary compliance is likely not enough to provide a solution to the issue at hand.

Fire-Pull-Box-smallTo add insult to injury just outside of Hanks room a fire alarm station pull was mounted on the wall. The instructions advising, “IN CASE OF FIRE”, you should “Pull the fire alarm and Call Fire Department (DIALL 911)”, but I guess they forgot to add “just not from the telephone in your room”.

Editor’s Note:
By the way, up here in New Jersey, “Dial” is spelled with one “L” in it . . .  just sayin’

While the subcommittee had seven public safety-related bills on the agenda for the day, they led off the witness testimony session with testimony from Hank.

 

Speaking in front of a large group is always a challenge. When that group contains only one or two people that you even know, it becomes even more challenging. It gets even worse when television cameras are trained on you; photographers are snapping away pictures, and the entire room is hanging on every word that you say. Despite this, Hank did an excellent job telling his story and making his point why the three basic tenants of Kari’s Law make sense.

  • Direct access to 911 from any device with or without an access code
  • On-site notification that the event has occurred and from where
  • No local interception of the call, unless by trained individuals

These capabilities, coupled with the NENA model legislation that recommends reporting to the PSAP by building, floor and emergency response zone, a safe environment for any building can be established.

This model is functional, efficient, and most importantly, affordable. It does not require a unique telephone number on each telephone device with an Automatic Location Information database record associated along with it, incurring monthly costs. This solution provides public safety with the information needed; when they need it. For larger more complex enterprise deployments, these solutions are completely in line with the NENA i3 Next Generation 911 Framework. This framework allows networks to contribute real-time information such as floor plans, heat sensor information as well as information about the facility, such as the location of nearby fire equipment or AEDs.

Getting to the right facility is important, as noted in my recent blog discussing the role of ANI/ALI and additional data in Next Generation 911 network environments. But the additional data and situational awareness will provide detail to the incident that can save time and lives in faster and appropriate response.

In addition to the House bill introduced by Representative Gohmert, a companion bill S. 2553  was introduced in the Senate by US Senator Amy Klobuchar (D.-Minn), and US Senator Deb Fisher (R.-Neb.) along with Senators John Cornyn (R.-Texas), Ted Cruz (R.-Texas), and Brian Schatz (D-Hawaii). Senator Klobuchar is no stranger to 911. A former prosecutor and the co-chair of the Next Generation 9-1-1 Caucus. The NG911 Institute supports the Caucus, who last year awarded Hank with the “Carla Anderson – Heart of 9-1-1” Advocacy Award: Presented in memory of the Institute’s past Executive Director, Carla Anderson, who recently passed away. This award recognizes an individual or organization whose contribution to public safety mirrors the passion and commitment demonstrated by Carla for 9-1-1. Avaya graciously provided sponsorship for this award, and I had the extreme honor to present this to Hank at the 2015 Event in the Rayburn House Office Building.

 

Pai-Fletch-Hank-April-16

Hank Hunt  Commissioner Ajit Pai, Fletch

Gohmert-Fletch-Hank-April-16

FletchHank Hunt, Representative Louie Gohmert

Fischer-Fletch-Hank-April-16

FletchSenator Deb Fischer, Hank Hunt

Cornyn-Fletch-Hank-April-16

FletchHank HuntSenator John Cornyn

Klobuchar-Fletch-Senate-April-16

 Fletch, Senator Amy KlobucharHank Hunt

In an effort to raise awareness about MLTS/PBX 911 programming and compliance, and to support initiatives behind Kari’s law, Hank Hunt has created a 501 (c)3 Non-profit organization: The No Nine Needed Foundation, http://NoNineNeeded.com where you can follow the progress on the initiatives and make a donation to help support the cause.

Print

The Change.Org Petition remains active at http://Change.Org/KarisLaw should you wish to add your name to the list of 550,000 supporters from around the world.

Follow me on Twitter @Fletch911
Read my other AVAYA CONNECTED Blogs

Mark J. Fletcher, ENP is the Chief Architect for Worldwide Public Safety Solutions at Avaya. As a seasoned professional with nearly 30 years of service, he directs the strategic roadmap for Next Generation Emergency Services in both the Enterprise and Government portfolios at Avaya. In 2014, Fletcher was made a member of the NENA Institute Board in the US, in 2014 – 2015 he served as co-chair of the EENA NG112 Committee in the European Union, providing valuable insight to State and Federal legislators globally driving forward both innovation and compliance.

Powered by WordPress.com.

Up ↑